skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Fries, Daniela_V"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Infrared photodissociation (IR-PD) spectra of iron cluster dinitrogen adsorbate complexes [Fen(N2)m]+ for n = 8–20 reveal slightly redshifted IR active bands in the region of 2200–2340 cm−1. These bands mostly relate to stretching vibrations of end-on coordinated N2 chromophores, a μ1,end end-on binding motif. Density Functional Theory (DFT) modeling and detailed analysis of n = 13 complexes are consistent with an icosahedral Fe13+ core structure. The first adsorbate shell closure at (n,m) = (13,12)—as recognized by the accompanying paper on the kinetics of N2 uptake by cationic iron clusters—comes with extensive IR-PD band broadening resulting from enhanced couplings among adjacent N2 adsorbates. DFT modeling predicts spin quenching by N2 adsorption as evidenced by the shift of the computed spin minima among possible spin states (spin valleys). The IR-PD spectrum of (17,1) surprisingly reveals an absence of any structure but efficient non-resonant fragmentation, which might indicate some weakly bound (roaming) N2 adsorbate. The multiple and broad bands of (17,m) for all other cases than (17,1) and (17,7) indicate a high degree of variation in N2 binding motifs and couplings. In contrast, the (17,7) spectrum of six sharp bands suggests pairwise equivalent N2 adsorbates. The IR-PD spectra of (18,m) reveal additional features in the 2120–2200 cm−1 region, which we associate with a μ1,side side-on motif. Some additional features in the (18,m) spectra at high N2 loads indicate a μ1,tilt tilted end-on adsorption motif. 
    more » « less
  2. We present a study of stepwise cryogenic N2 adsorption on size-selected Fen+ (n = 8–20) clusters within a hexapole collision cell held at T = 21–28 K. The stoichiometries of the observed adsorption limits and the kinetic fits of stepwise N2 uptake reveal cluster size-dependent variations that characterize four structural regions. Exploratory density functional theory studies support tentative structural assignment in terms of icosahedral, hexagonal antiprismatic, and closely packed structural motifs. There are three particularly noteworthy cases, Fe13+ with a peculiar metastable adsorption limit, Fe17+ with unprecedented nitrogen phobia (inefficient N2 adsorption), and Fe18+ with an isomeric mixture that undergoes relaxation upon considerable N2 uptake. 
    more » « less